“Economic Growth, Income Distribution, and Climate Change”

In response to my earlier post on climate change and aggregate demand, Lance Taylor sends along his recent article “Economic Growth, Income Distribution, and Climate Change,” coauthored with Duncan Foley and Armon Rezai.

The article, which was published in Ecological Economics, lays out a structuralist growth model with various additions to represent the effects of climate change and possible responses to it. The bulk of the article works through the formal properties of the model; the last section shows the results of some simulations based on plausible values of the various parmaters. 1 I hadn’t seen the article before, but its conclusions are broadly parallel to my arguments in the previous two posts. It tells a story in which public spending on decarbonization not only avoids the costs and dangers of climate change itself, but leads to higher private output, income and employment – crowding in rather than crowding out.

Before you click through, a warning: There’s a lot of math there. We’ve got a short run where output and investment are determined via demand and distribution, a long run where the the investment rate from the short run dynamics is combined with exogenous population growth and endogenous productivity growth to yield a growth path, and an additional climate sector that interacts with the economic variables in various ways. How much the properties of a model like this change your views about the substantive question of climate change and economic growth, will depend on how you feel about exercises like this in general. How much should the fact that that one can write down a model where climate change mitigation more than pays for itself through higher output, change our beliefs about whether this is really the case?

For some people (like me) the specifics of the model may be less important that the fact that one of the world’s most important heterodox macroeconomists thinks the conclusion is plausible. At the least, we can say that there is a logically coherent story where climate change mitigation does not crowd out other spending, and that this represents an important segment of heterodox economics and not just an idiosyncratic personal view.

If you’re interested, the central conclusions of the calibrated model are shown below. The dotted red line shows the business-as-usual scenario with no public spending on climate change, while the other two lines show scenarios with more or less aggressive public programs to reduce and/or offset carbon emissions.

Here’s the paper’s summary of the outcomes along the business-as-usual trajectory:

Rapid growth generates high net emissions which translate into rising global mean temperature… As climate damages increase, the profit rate falls. Investment levels are insufficient to maintain aggregate demand and unemployment results. After this boom-bust cycle, output is back to its current level after 200 years but … employment relative to population falls from 40% to 15%. … Those lucky enough to find employment are paid almost three times the current wage rate, but the others have to rely on subsistence income or public transfers. Only in the very long run, as labor productivity falls in response to rampant unemployment, can employment levels recover. 

In the other scenarios, with a peak of 3-6% of world GDP spent on mitigation, we see continued exponential output growth in line with historical trends. The paper doesn’t make a direct comparison between the mitigation cases and a world where there was no climate change problem to begin with. But the structure of the model at least allows for the possibility that output ends up higher in the former case.

The assumptions behind these results are: that the economy is demand constrained, so that public spending on climate mitigation boosts output and employment in the short run; that investment depends on demand conditions as well as distributional conflict, allowing the short-run dynamics to influence the long-run growth path; that productivity growth is endogenous, rising with output and with employment; and that climate change affects the growth rate and not just the level of output, via lower profits and faster depreciation of existing capital.2

This is all very interesting. But again, we might ask how much we learn from this sort of simulation. Certainly it shouldn’t be taken as a prediction! To me there is one clear lesson at least: A simple cost benefit framework is inadequate for thinking about the economic problem of climate change. Spending on decarbonization is not simply a cost. If we want to think seriously about its economic effects, we have to think about demand, investment, distribution and induced technological change. Whether you find this particular formalization convincing, these are the questions to ask.

Reading Notes: Demand and Productivity

Here are two interesting articles on demand and productivity that people have recently brought to my attention.

The economic historian Gavin Wright — author of the classic account of the economic logic of the plantation — just sent me a piece he wrote a few years ago on the productivity boom of the 1990s. As he said in his email, his account of the ‘90s is very consistent with the suggestions I make in my Roosevelt paper about how strong demand might stimulate productivity growth.

In this article, Wright traces the idea that high wage regions will experience faster productivity growth back to H. J. Habbakuk’s 1962 American and British Technology in the Nineteenth Century. Then he assembles a number of lines of evidence that rapid wage growth drove the late-1990s productivity acceleration, rather than vice versa.

He points out that the widely-noted “productivity explosion” of the 1920s — from 1.5 percent a year to over 5 percent — was immediately preceded by a period of exceptionally strong wage growth: “The real price of labor in the 1920s … was between 50 and 70 percent higher than a decade earlier.” [1] The pressure of high wages, he suggests, encouraged the use of electricity and other general-purpose technologies, which had been available for decades but only widely adopted in manufacturing in the 1920s. Conversely, we can see the productivity slowdown of the 1970s as, at least in part, a result of the deceleration of wage growth, which — Wright argues — was the result of institutional changes including the decline of unions, the erosion of the minimum wage and other labor regulations, and more broadly the shift back toward “‘flexible labor markets,’ reversing fifty years of labor market policy.”

Turning to the 1990s, the starting point is the sharp acceleration of productivity in the second half of the decade. This acceleration was very widely shared, including sectors like retail where historically productivity growth had been limited. The timing of this acceleration has been viewed as a puzzle, with no “smoking gun” for simultaneous productivity boosting innovations across this range of industries over a short period. But “if you look at the labor market, you can find a smoking gun in the mid-1990s. … real hourly wages finally began to rise at precisely that time, after more than two decades of decline. … Unemployment rates fell below 4 percent — levels reached only briefly in the 1960s… Should it be surprising that employers turned to labor-saving technologies at this time?” This acceleration in real wages, Wright argues, was not the result of higher productivity or other supply-side factors; rather “it is most plausibly attributed to macroeconomic conditions, when an accommodating Federal Reserve allowed employment to press against labor supply for the first time in a generation.”

The productivity gains of the 1990s did, of course, involve new use of information technology. But the technology itself was not necessarily new. “James Cortada [2004] lists eleven key IT applications in the retail industry circa 1995-2000, including electronic shelf levels, scanning, electronic fund transfer, sales-based ordering and internet sales … with the exception of e-business, the list could have come from the 1970s and 1980s.”

Wright, who is after all a historian, is careful not to argue that there is a general law linking higher wages to higher productivity in all historical settings. As he notes, “such a claim is refuted by the experience of the 1970s, when upward pressures on wages led mainly to higher inflation…” In his story, both sides are needed — the technological possibilities must exist, and there must be sufficient wage pressure to channel them into productivity-boosting applications. I don’t think anyone would say he’s made a decisive case , but if you’re inclined to a view like this the article certainly gives you more material to support it.

*

A rather different approach to these questions is this 2012 paper by Servaas Storm and C. W. M. Naastepad. Wright is focusing on a few concrete episodes in the history of a particular country, which he explores using a variety of material — survey and narrative as well as conventional economic data. Storm and Naastepad are proposing a set of general rules that they support with a few stylized facts and then explore via of the properties of a formal model. There are things to be learned from both approaches.

In this case the model is simple: output is demand-determined. Demand is either positive or negative function of the wage share (i.e. the economy is either wage-led or profit-led). And labor productivity is a function of both output and the wage, reflecting two kinds of channels by which demand can influence productivity. And an accounting identity says that employment growth is qual to output growth less labor productivity growth. The productivity equation is the distinctive feature here. Storm and Naastepad adopt as “stylized facts” — derived from econometric studies but not discussed in any detail — that both parameters are on the order of 0.4: An additional one percent growth in output, or in wages, will lead to an 0.4 percent growth in labor productivity.

This is a very simple structure but it allows them to draw some interesting conclusions:

– Low wages may boost employment not through increased growth or competitiveness, but through lower labor productivity. (They suggest that this is the right way to think about the Dutch “employment miracle of the 1990s.)

– Conversely, even where demand is wage-led (i.e. a shift to labor tends to raise total spending) faster wage growth is not an effective strategy for boosting employment, because productivity will rise as well. (Shorter hours or other forms of job-sharing, they suggest, may be more successful.)

– Where demand is strongly wage-led (as in the Scandinavian countries, they suggest), profits will not be affected much by wage growth. The direct effect of higher wages in this case could be mostly or entirely offset by the combination of higher demand and higher productivity. If true, this has obvious implications for the feasibility of the social democratic bargain there.

– Where demand is more weakly wage-led or profit-led (as with most structuralists, they see the US as the main example of the latter), distributional conflicts will be more intense. On the other hand, in this case the demand and productivity effects work together to make wage restraint a more effective strategy for boosting employment.

It’s worth spelling out the implications a bit more. A profit-led economy is one in which investment decisions are very sensitive to profitability. But investment is itself a major influence on profit, as a source of demand and — emphasized here — as a source of productivity gains that are captured by capital. So wage gains are more threatening to profits in a setting in which investment decisions are based largely on profitability. In an environment in which investment decisions are motivated by demand or exogenous animal spirits (“only a little more than an expedition to the South Pole, based on a calculation of benefits to come”), capitalists have less to fear from rising wages. More bluntly: one of the main dangers to capitalists of a rise in wages, is their effects on the investment decisions of other capitalists.